The easy-to-use yet powerful software lets you specify complex procedures once and then deploy them over and over again. Minimal setup and a minimal need for supervision.
Automate and refine measurements of …
  • Equilibrium ligand-binding

  • Enzyme kinetics

  • Temperature denaturation

  • pH denaturation

  • Chemical denaturation

  • Aggregation

  • Solvation

  • Isoelectric point interval

  • Phase transitions

  • Ion flux

  • CMC determination

  • pK determination

  • Vesicle swelling/shrinking

… and more.

Probe Drum Lab-in-a-box combines UV/vis absorbance, fluorescence and laser-based static light scattering measurements with a nanoliter titration system and a state-of-the-art temperature control system, tightly integrated in an instrument smaller than a regular shoe box. It is controlled by an inventive, experiment centered software.

The new state-of-the-art temperature control system controls the temperature of the sample, rather than the temperature of the sample holder, with 0.1 °C accuracy. This makes possible high resolution temperature titrations to determine for example protein temperature stability or DNA melting temperatures.

Probe Drum Lab-in-a-box delivers excellent data over and over again with minimal setup and a minimal need for supervision. It removes tedious, repetitive labor and frees up time for science.

The easy-to-use yet powerful software lets you specify complex procedures once and then deploy them over and over again. The quality of your measurements will never again depend on the limitations and variance of manual pipetting.

pH Titration with Feedback

Set your desired pH range and step size, and press Go! For each point in the experiment, Probe Drum will calculate the appropriate amount of acid or base to add, add it, detect the achieved pH with the electrode, and adjust the addition if necessary. After the desired pH has been reached and stabilized in each point, the preset spectra will be recorded, reporting on the sample status at each point. The result is a thorough map of sample properties vs. pH.

See user illustrations like…
  • Ekvall, M. T., Lundqvist, M., Kelpsiene, E., Šileikis, E., Gunnarsson, S. B., & Cedervall, T. (2019). Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Advances.
  • Gunnarsson, S. B., Bernfur, K., Mikkelsen, A., & Cedervall, T. (2018). Analysis of nanoparticle biomolecule complexes. Nanoscale, 10(9), 4246–4257.
  • Ekvall, M. T., Hedberg, J., Odnevall Wallinder, I., Hansson, L.-A., & Cedervall, T. (2018). Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology, 12(1), 79–89.
  • Borgström, B., Huang, X., Chygorin, E., Oredsson, S., & Strand, D. (2016). Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids. ACS Medicinal Chemistry Letters, 7(6), 635–640.
  • Mohanty, P. S., Nöjd, S., Bergman, M. J., Nägele, G., Arrese-Igor, S., Alegria, A., … Dhont, J. K. G. (2016). Dielectric spectroscopy of ionic microgel suspensions. Soft Matter, 12(48), 9705–9727.
  • Søndergaard, M. T., Sorensen, A. B., Skov, L. L., Kjaer-Sorensen, K., Bauer, M. C., Nyegaard, M., … Overgaard, M. T. (2015). Calmodulin mutations causing catecholaminergic polymorphic ventricular tachycardia confer opposing functional and biophysical molecular changes. The FEBS Journal, 282(4), 803–816.
  • Thyagarajan, S., Leiding, T., Årsköld, S. P., Cheprakov, A. V., & Vinogradov, S. A. (2010). Highly Non-Planar Dendritic Porphyrin for pH Sensing: Observation of Porphyrin Monocation. Inorganic Chemistry, 49(21), 9909–9920.
  • Gustavsson, T., Trane, M., Moparthi, V. K., Miklovyte, E., Moparthi, L., Górecki, K., … Hägerhäll, C. (2010). A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli-Expression and characterization of cytochrome-tagged Complex I subunits. Protein Science, 19(8), 1445–1460.
  • Leiding, T., Górecki, K., Kjellman, T., Vinogradov, S. A., Hägerhäll, C., & Årsköld, S. P. (2009). Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes. Analytical Biochemistry, 388(2), 296–305.

Automate and refine. Remove tedious, repetitive labor. Free up time for science!